Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - 9.3 Separable Equations - 9.3 Exercises - Page 645: 17

Answer

$\displaystyle y=\frac{4a}{\sqrt{3}}\sin(x) - a = a(\frac{4}{\sqrt{3}}\sin(x) - 1)$

Work Step by Step

$\displaystyle y'\tan(x) = a + y$ Separation of variables: $\displaystyle \frac{dy}{dx}\cdot\tan(x) = a + y$ $\displaystyle \frac{dy}{dx}= \frac{a+y}{\tan(x)}$ $\displaystyle \frac{1}{a+y}dy= \cot(x)dx$ Integrate with respect to each variable. For the right side, use $u$-substitution where $u = \sin(x)\quad$ so that $\quad du = \cos(x)dx$ $\displaystyle \int\frac{dy}{a+y}= \int\frac{\cos(x)dx}{\sin(x)}$ $\displaystyle \ln|a+y| = \int\frac{du}{u}$ $\displaystyle \ln|a+y| = \ln|u|+C$ $\displaystyle \ln|a+y| = \ln|\sin(x)|+C$ $\displaystyle e^{\ln|a+y|} = e^{\ln|\sin(x)|+C} = e^{\ln|\sin(x)|}\cdot e^C$ ***Since $C$ has not taken on any value yet, we can rewrite $e^C$ as just $C$*** $\displaystyle a+y = C\sin(x)$ Plug in the initial condition and solve for $C$ $\displaystyle a+(a) = C\sin(\frac{\pi}{3})$ $\displaystyle 2a = C(\frac{\sqrt{3}}{2})$ $\displaystyle \frac{2a}{\frac{\sqrt{3}}{2}} = \frac{2a}{1} \cdot \frac{2}{\sqrt{3}}= C$ $\displaystyle C = \frac{4a}{\sqrt{3}}$ Plug the value for $C$ that we just found back into the equation and isolate $y$ $\displaystyle a+y=(\frac{4a}{\sqrt{3}})\sin(x)$ $\displaystyle y=\frac{4a}{\sqrt{3}}\sin(x) - a = a(\frac{4}{\sqrt{3}}\sin(x) - 1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.