Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.4 Indefinite Integrals and the Net Change Theorem - 4.4 Exercises - Page 336: 8



Work Step by Step

$$A=\int(u^6-2u^5-u^3+\frac{2}{7})du$$ From Table 1, $$\int cf(x)dx=c\int f(x)dx$$ $$\int[f(x)+g(x)]dx=\int f(x)dx+\int g(x)dx$$ Therefore, $$A=\int(u^6)du-2\int(u^5)du-\int(u^3)du+\int\frac{2}{7}du$$ From Table 1, we also get the followings $$\int kdx=kx+C$$ $$\int (x^n)dx=\frac{x^{n+1}}{n+1}$$ Therefore, $$A=\frac{u^7}{7}-2\frac{u^6}{6}-\frac{u^4}{4}+\frac{2u}{7}+C$$ $$A=\frac{u^7}{7}-\frac{u^6}{3}-\frac{u^4}{4}+\frac{2u}{7}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.