Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.10 Taylor and Maclaurin Series - 11.10 Exercises - Page 811: 17


Maclaurin's series is: $\Sigma_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}$ and $R=\infty$

Work Step by Step

$f(x)=sinhx=\Sigma_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}$ $\lim\limits_{n \to \infty}|\frac{a_{n+1}}{a_{n}}|=\lim\limits_{n \to \infty}|\frac{\frac{x^{2n+3}}{(2n+3)!}}{\frac{x^{2n+1}}{(2n+1)!}}|$ $=\lim\limits_{n \to\infty}|\frac{x^{2}}{(2n+2)(2n+3)}|$ $=\lim\limits_{n \to\infty}|\frac{x^{2}}{\infty}|$ $=0\lt 1$ Therefore, the Maclaurin's series converges for all values of $x$. Maclaurin's series is: $\Sigma_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}$ and $R=\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.