Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Calculus with Parametric Curves - 10.2 Exercises - Page 696: 63

Answer

$\frac{6}{5}{\pi}a^{2}$

Work Step by Step

$x$ = $a\cos^3\theta$ $y$ = $a\sin^3\theta$, $0$ $\leq\theta\leq\frac{\pi}{2}$ $\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2 = (-3a\cos^2\theta\sin\theta)^2+(3a\sin^2\theta\cos\theta)^2$ $=9a^2\cos^4\theta\sin^2\theta+9a^2\sin^4\theta\cos^2\theta$ $=9a^2\sin^2\theta\cos^2\theta(\cos^2\theta+\sin^2\theta)$ $=9a^2\sin^2\theta\cos^2\theta$ $S$ = $\int_0^{\frac{\pi}{2}}2{\pi}(a\sin^3\theta)(3a\sin\theta\cos\theta)d\theta$ $=6\pi a^2\int_0^{\frac{\pi}{2}}2{\pi}\sin^4\theta\cos\theta d\theta$ $=6\pi a^2\left(\frac{\sin^5\theta}{5}\right)_0^{\pi/2}$ $=\frac{6}{5}{\pi}a^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.