Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Calculus with Parametric Curves - 10.2 Exercises - Page 696: 43

Answer

$L$ = $\frac{\sqrt 2}{2}+\frac{1}{2}{\ln}(1+\sqrt 2)$

Work Step by Step

$x$ = $t\sin t$ $y$ = $t\cos t$ $\frac{dx}{dt}$ = $t\cos t+\sin t$ $\frac{dy}{dt}$ = $-t\sin t+\cos t$ $\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2$ = $(t\cos t+\sin t)^2+(-t\sin t+\cos t)^2$ = $t^2\cos^2t+2t\cos t\sin t+\sin^2t+t^2\sin^2t-2t\sin t\cos t+\cos^2t$ = $t^2+1$ $L$ = $\int_0^1{\sqrt {t^2+1}}dt$ $L$ = $\left[\frac{1}{2}t\sqrt {t^2+1}+\frac{1}{2}{\ln}({t+\sqrt {t^2+1}})\right]_0^1$ $L$ = $\frac{\sqrt 2}{2}+\frac{1}{2}{\ln}(1+\sqrt 2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.