Answer
$L$ $\approx$ $3.1416$
Work Step by Step
$x$ = $t+e^{-t}$
$y$ = $t-e^{-t}$
$\frac{dx}{dt}$ = $1-e^{-t}$
$\frac{dy}{dt}$ = $1+e^{-t}$
So
$\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2}$ = $(1-e^{-t})^{2}+(1+e^{-t})^{2}$ = $2+2e^{-2t}$
Thus
$L$ = $\int_a^b{\sqrt {\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2}}}dt$
$L$ = $\int_0^2\sqrt {2+2e^{-2t}}dt$
$L$ $\approx$ $3.1416$