Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.1 Vectors in the Plane - Exercises - Page 650: 53

Answer

(a) The vector $ - {\bf{w}}$ matches (ii) $\overrightarrow {CA} $ (b) The vector $ - {\bf{v}}$ matches (iv) $\overrightarrow {BA} $ (c) The vector ${\bf{w}} - {\bf{v}}$ matches (iii) $\overrightarrow {BC} $ (d) The vector ${\bf{v}} - {\bf{w}}$ matches (i) $\overrightarrow {CB} $

Work Step by Step

(a) The vector $ - {\bf{w}}$ has the same length with the vector ${\bf{w}} = \overrightarrow {AC} $ but in opposite direction. So, it matches (ii) $\overrightarrow {CA} $. (b) The vector $ - {\bf{v}}$ has the same length with the vector ${\bf{v}} = \overrightarrow {AB} $ but in opposite direction. So, it matches (iv) $\overrightarrow {BA} $. (c) Write ${\bf{w}} - {\bf{v}} = {\bf{w}} + \left( { - {\bf{v}}} \right)$. From the result in part (b) we have $ - {\bf{v}} = \overrightarrow {BA} $. So, ${\bf{w}} - {\bf{v}} = {\bf{w}} + \left( { - {\bf{v}}} \right) = \overrightarrow {AC} + \overrightarrow {BA} = \overrightarrow {BA} + \overrightarrow {AC} $. ${\bf{w}} - {\bf{v}} = \overrightarrow {BC} $ It matches (iii) $\overrightarrow {BC} $. (d) Write ${\bf{v}} - {\bf{w}} = {\bf{v}} + \left( { - {\bf{w}}} \right)$. From the result in part (a) we have $ - {\bf{w}} = \overrightarrow {CA} $. So, ${\bf{v}} - {\bf{w}} = {\bf{v}} + \left( { - {\bf{w}}} \right) = \overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {CA} + \overrightarrow {AB} $. ${\bf{v}} - {\bf{w}} = \overrightarrow {CB} $. It matches (i) $\overrightarrow {CB} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.