Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.3 Exercises - Page 610: 64

Answer

$n\geq1000$

Work Step by Step

$\Sigma_{n=1}^{\infty}\frac{1}{n^{2}+1}$ The function $\frac{1}{n^{2}+1}$ is positive, continuous, and ultimately decreasing. Therefore we can use the integral test to find the minimum value of $R_{n}\leq0.001$: $R_{n}\leq\int_{n}^{\infty}\frac{1}{n^{2}+1}dn$ $R_{n}\leq\lim\limits_{a \to \infty}\int_{n}^{a}\frac{1}{n^{2}+1}dn$ $u=n$ $du=dn$ $a=1$ $R_{n}\leq\lim\limits_{a \to \infty}[arctann]_{n}^{a}$ $R_{n}\leq\lim\limits_{a \to \infty}[arctana-arctann]=arctan\infty-arctann=\frac{\pi}{2}-arctann$ $\frac{\pi}{2}-arctann\leq0.001$ $-arctann\leq\frac{1}{1000}-\frac{\pi}{2}$ $arctann\geq-\frac{1}{1000}+\frac{\pi}{2}$ $tan(arctann)\geq tan(-\frac{1}{1000}+\frac{\pi}{2})$ Round up to the nearest integer: $n\geq1000$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.