Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.3 Exercises - Page 610: 49

Answer

$$ \sum_{n=1}^{\infty} \frac{n}{(1+n^{2})^{p}} $$ The given series converges if $p \gt 1$, and diverges if $0 \lt p \lt 1 $ .

Work Step by Step

$$ \sum_{n=1}^{\infty} \frac{n}{(1+n^{2})^{p}} $$ Apply the Integral Test to the series when $p=1$ $$ \sum_{n=1}^{\infty} \frac{n}{(1+n^{2})} $$ The function $$ f(x)=\frac{x}{(1+x^{2})} $$ is positive and continuous for $x\geq 1$ . To determine whether $f$ is decreasing, find the derivative. $$ f^{'}(x)=\frac{1-x^{2}}{(1+x^{2})^{2}} $$ So, $f^{'}(x) \lt 0 $ for $x\gt 1$, and it follows that $f$ satisfies the conditions for the Integral Test. You can integrate to obtain $$ \begin{aligned} \int_{1}^{\infty} \frac{x}{(1+x^{2})} d x &=\lim\limits_{t \to \infty } \int_{1}^{t } \frac{x}{(1+x^{2})} d x \\ &=\lim\limits_{t \to \infty } [\frac{1}{2} \ln {(1+x^{2})}]_{1}^{t} \\ &=\infty \\ \end{aligned} $$ (a) So, the series diverges when $p=1$ (b) If $p \ne 1$ Apply the Integral Test to the series when $p\ne 1$ $$ \sum_{n=1}^{\infty} \frac{n}{(1+n^{2})^{p}} $$ The function $$ f(x)=\frac{x}{(1+x^{2})^{p}} $$ is positive and continuous for $x\geq 1 $ . To determine whether $f$ is decreasing, find the derivative. $$ f^{'}(x)=\frac{1-(2p-1)x^{2}}{(1+x^{2})^{p+1}} $$ So, $f^{'}(x) \lt 0 $ for $p \gt 0 , p \ne 1$, and it follows that $f$ satisfies the conditions for the Integral Test. You can integrate to obtain $$ \begin{aligned} \int_{1}^{\infty} \frac{x}{(1+x^{2})^{p}} d x &=\lim\limits_{t \to \infty } \int_{1}^{t } \frac{x}{(1+x^{2})^{p}} d x \\ &=\lim\limits_{t \to \infty } [\frac{1}{(x^{2}+1)^{p-1}(2-2p) } ] \\ &=\left[ \frac{1}{(x^{2}+1)^{p-1}(2-2p) } \right]_{1}^{\infty}\\ \end{aligned} $$ we obtain that if $p \gt 1$ the integral is convergent. For $0 \lt p \lt 1 $ the integral is divergent . Therefore, the series converges if $p \gt 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.