Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.3 Exercises - Page 610: 48

Answer

$$ \sum_{n=2}^{\infty} \frac{\ln n}{n^{p}} $$ The given series converges if $p \gt 1$.

Work Step by Step

$$ \sum_{n=2}^{\infty} \frac{\ln n}{n^{p}} $$ Apply the Integral Test to the series when $p=1$ $$ \sum_{n=2}^{\infty} \frac{\ln n}{n} $$ The function $$ f(x)=\frac{\ln x}{x} $$ is positive and continuous for $x\geq 2$ . To determine whether $f$ is decreasing, find the derivative. $$ f^{'}(x)=\frac{1- \ln x}{x^{2}} $$ So, $f^{'}(x) \lt 0 $ for $x \gt e$, and it follows that $f$ satisfies the conditions for the Integral Test. You can integrate to obtain $$ \begin{aligned} \int_{2}^{\infty} \frac{\ln x}{x} d x &=\lim\limits_{t \to \infty } \int_{2}^{t } \frac{\ln x}{x} d x \\ & \quad\quad\quad \left[\text { use integration by substituting }\right] \\ &\quad\quad\quad \left[ u=\ln x, \quad\quad d u= \frac{dx}{x} \right] , \text { then } \\ &=\lim\limits_{t \to \infty } \int_{2}^{t } u d u\\ &=\lim\limits_{t \to \infty } [\frac{u^{2} }{2} ]_{1}^{t} \\ &=\infty \\ \end{aligned} $$ (a) So, the series diverges when $p=1$ (b) If $p \ne 1$ Apply the Integral Test to the series when $p\ne 1$ $$ \sum_{n=2}^{\infty} \frac{\ln n}{n^{p}} $$ The function $$ f(x)=\frac{\ln x}{x^{p}} $$ is positive and continuous for $x\geq 2$ . To determine whether $f$ is decreasing, find the derivative. $$ f^{'}(x)=\frac{x^{p-1}(1- \ln x)}{x^{2p}} $$ So, $f^{'}(x) \lt 0 $ for $x \gt e$, and it follows that $f$ satisfies the conditions for the Integral Test. You can integrate to obtain $$ \begin{aligned} \int_{2}^{\infty} \frac{\ln x}{x^{p}} d x &=\lim\limits_{t \to \infty } \int_{2}^{t } \frac{\ln x}{x^{p}} d x \\ & \quad\quad\quad\left[\text { use integration by parts with } \right] \\ &\quad\quad\quad \left[\begin{array}{c}{u= \ln x, \quad\quad dv= x^{-p}dx }\\ {d u= \frac{dx}{x} , \quad\quad v= \frac{x^{1-p}}{1-p} }\end{array}\right] , \text { then }\\ &=\lim\limits_{t \to \infty } [\frac{x^{1-p} \ln x}{1-p} -\frac{1}{1-p } \int_{2}^{t } x^{-p} d x ]\\ &=\lim\limits_{t \to \infty } [\frac{x^{1-p} \ln x}{1-p} -\frac{x^{-p+1}}{(1-p)^{2} }] \\ &=\left[\frac{x^{-p+1}}{(-p+1)^{2}}[-1+(-p+1) \ln x]\right]_{2}^{\infty}\\ \end{aligned} $$ we obtain that if $p \gt 1$ the integral is convergent , therefore, the series converges if $p \gt 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.