Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.3 Exercises - Page 610: 63

Answer

$n\geq16$

Work Step by Step

$\Sigma_{n=1}^{\infty}e^{-\frac{n}{2}}$ The function $e^{-\frac{n}{2}}$ is positive, continuous, and ultimately decreasing. Therefore we can use the integral test to find the minimum value of $n$ for $R_{n}\leq0.001$: $R_{n}\leq\int_{n}^{\infty}e^{-\frac{n}{2}}dn$ $R_{n}\leq\lim\limits_{a \to \infty}\int_{n}^{a}e^{-\frac{n}{2}}dn$ $let$ $u=-\frac{n}{2}$ $du=-\frac{1}{2}dn$ $-2du=dn$ $u(n)=-\frac{n}{2}$ $u(a)=-\frac{a}{2}$ $R_{n}\leq-2\lim\limits_{a \to \infty}\int_{-\frac{n}{2}}^{-\frac{a}{2}}e^{u}du$ $R_{n}\leq-2\lim\limits_{a \to \infty}[e^{u}]_{-\frac{n}{2}}^{-\frac{a}{2}}$ $R_{n}\leq-2\lim\limits_{a \to \infty}[e^{-\frac{a}{2}}-e^{-\frac{n}{2}}]=-2(e^{-\frac{\infty}{2}}-e^{-\frac{n}{2}})=-2(\frac{1}{e^{\infty}}-\frac{1}{e^{\frac{n}{2}}})=\frac{2}{e^{\frac{n}{2}}}$ $\frac{2}{e^{\frac{n}{2}}}\leq\frac{1}{1000}$ $2000\leq e^{\frac{n}{2}}$ $ln2000\leq \frac{n}{2}lne$ $ln2000\leq \frac{n}{2}$ $2ln2000\leq n$ Round up to the nearest integer: $n\geq16$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.