Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.3 Exercises - Page 610: 57

Answer

$R_{10}\leq\frac{\pi}{2}-arctan10$ $0.982\leq S\leq1.081$

Work Step by Step

$\Sigma_{n=1}^{\infty}\frac{1}{n^{2}+1}$, using $n=10$ Find the partial sum $S_{10}$ by plugging it into a calculator: $S_{10}=\Sigma_{n=1}^{10}\frac{1}{n^{2}+1}\approx0.9817928223$ $S_{10}=\frac{1}{2}+\frac{1}{5}+\frac{1}{10}+\frac{1}{17}+\frac{1}{26}+\frac{1}{37}+\frac{1}{50}+\frac{1}{65}+\frac{1}{82}+\frac{1}{101}\approx0.9817928223$ The function $\frac{1}{n^{2}+1}$ is positive, continuous, and ultimately decreasing. Therefore we can use the integral test to find the approximation of maximum error for the function. $R_{10}\leq\int_{10}^{\infty}\frac{1}{n^{2}+1}dn$ $R_{10}\leq\lim\limits_{a \to \infty}\int_{10}^{a}\frac{1}{n^{2}+1}dn$ $u=n$ $du=dn$ $a=1$ $R_{10}\leq\lim\limits_{a \to \infty}[arctann]_{10}^{a}$ $R_{10}\leq\lim\limits_{a \to \infty}[arctana-arctan10]=arctan\infty-arctan10=\frac{\pi}{2}-arctan10$ $S=0.9817928223+\frac{\pi}{2}-arctan10\approx1.081461475$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.