Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.3 Exercises - Page 610: 59

Answer

$R_{4}\leq\frac{1}{2e^{16}}$ $0.4049\leq S\leq0.4088$

Work Step by Step

$\Sigma_{n-1}^{\infty}ne^{-n^{2}}$, using $n=4$ Find the partial sum $S_{4}$ by plugging it into a calculator: $S_{4}\Sigma_{n-1}^{4}ne^{-n^{2}}\approx0.4048813985$ $S_{4}=e^{-1}+2e^{-4}+3e^{-9}+4e^{-16}\approx0.4048813985$ The function $ne^{-n^{2}}$ is positive, continuous, and ultimately decreasing. Therefore we can use the integral test to find the approximation of maximum error for the function. $R_{4}\leq\int_{4}^{\infty}ne^{-n^{2}}dn$ $R_{4}\leq\lim\limits_{a \to \infty}\int_{4}^{a}ne^{-n^{2}}dn$ $let$ $u=-n^{2}$ $du=-2ndn$ $-\frac{1}{2}du=ndn$ $u(a)=-a^{2}$ $u(4)=-16$ $R_{4}\leq-\frac{1}{2}\lim\limits_{a \to \infty}\int_{-16}^{-a^{2}}e^{u}du$ $R_{4}\leq-\frac{1}{2}\lim\limits_{a \to \infty}[e^{u}]_{-16}^{-a^{2}}$ $R_{4}\leq-\frac{1}{2}\lim\limits_{a \to \infty}[e^{-a^{2}}-e^{-16}]=-\frac{1}{2}(\frac{1}{e^{\infty}}-\frac{1}{e^{16}})=-\frac{1}{2}(-\frac{1}{e^{16}})=\frac{1}{2e^{16}}$ $S\leq0.4048813985+\frac{1}{2e^{16}}\approx0.408814548$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.