Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.10 Exercises - Page 673: 39

Answer

$\dfrac{1}{2}+\dfrac{1}{2}[1-\dfrac{(2x)^2}{2!}+\dfrac{(2x)^4}{4!}-\dfrac{(2x)^6}{6!}+..... +\dfrac{(-1)^n(2x)^{2n}}{(2n)!}]$

Work Step by Step

Consider the formula:$\cos^2 x=\dfrac{1+\cos 2x}{2}=\dfrac{1}{2}+\dfrac{\cos 2x}{2}$ We know that the Maclaurin series for $\cos x=\Sigma_{n=0}^{\infty} (-1)^{n} \dfrac{(x)^{2n}}{(2n)!}=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+..... $ Replace $x$ with $2x$ in the above series. $\cos 2 x=1-\dfrac{(2x)^2}{2!}+\dfrac{(2x)^4}{4!}-\dfrac{(2x)^6}{6!}+..... +\dfrac{(-1)^n(2x)^{2n}}{(2n)!} $ Thus, our required series is: $f(x)=\dfrac{1}{2}+\dfrac{\cos 2x}{2}=\dfrac{1}{2}+\dfrac{1-\dfrac{(2x)^2}{2!}+\dfrac{(2x)^4}{4!}-\dfrac{(2x)^6}{6!}+..... +\dfrac{(-1)^n(2x)^{2n}}{(2n)!}}{2}\\=\dfrac{1}{2}+\dfrac{1}{2}[1-\dfrac{(2x)^2}{2!}+\dfrac{(2x)^4}{4!}-\dfrac{(2x)^6}{6!}+..... +\dfrac{(-1)^n(2x)^{2n}}{(2n)!}]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.