Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.10 Exercises - Page 673: 2

Answer

$\Sigma_{n=0}^{\infty} (-1)^{n} \dfrac{(4x)^n}{n !}$

Work Step by Step

Here, we have: $f(x)=e^{-4x} \implies f(0)=1\\ f'(x)=-4 e^{-4x} \implies f'(0)=-4\\f''(x)=16 e^{-4x} \implies f''(0)=16$ and so on. The Taylor series of a function $f(x)$ at $x=c$ can be written as: $T(x)=f(a)+\dfrac{f′(a)}{1!}(x−a)+\dfrac{f′′(a)}{2!}(x−a)^2+......+\dfrac{f^n(a)}{n!}(x−a)^n$ Hence, the required Taylor series is: $T(x)=1-4x+\dfrac{16x^2}{2!}+.......=\Sigma_{n=0}^{\infty} (-1)^{n} \dfrac{(4x)^n}{n !}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.