Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.10 Exercises - Page 673: 28

Answer

$\Sigma_{n=0}^{\infty} (-1)^n \dfrac{3^n}{n !}x^n$

Work Step by Step

We know that the Taylor series for $e^x=\Sigma_{n=0}^{\infty} \dfrac{x^n}{n!}=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+.....$ Replace $x$ with $-3x$. Thus, our required series is: $e^{-3x}=1-3x+\dfrac{9x^2}{2}-\dfrac{27 x^3}{3!}+....+\dfrac{x^n}{n !}\\=\Sigma_{n=0}^{\infty} (-1)^n \dfrac{3^n}{n !}x^n$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.