Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.10 Exercises - Page 673: 38

Answer

$2 \cosh x =\Sigma_{n=0}^{\infty} \dfrac{x^n}{n!}+\Sigma_{n=0}^{\infty} \dfrac{(-x)^n}{n!}$

Work Step by Step

We know that the Maclaurin series for $e^x=\Sigma_{n=0}^{\infty} \dfrac{x^n}{n!}=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+.....$ Here, we have: $2 \cosh x=\Sigma_{n=0}^{\infty} \dfrac{x^n}{n!}+\Sigma_{n=0}^{\infty} \dfrac{(-x)^n}{n!}=\Sigma_{n=0}^{\infty} \dfrac{2x^{2n}}{(2n)!}\\=2+x^2+\dfrac{x^4}{12}+......$ Thus, our required series is: $2 \cosh x =\Sigma_{n=0}^{\infty} \dfrac{x^n}{n!}+\Sigma_{n=0}^{\infty} \dfrac{(-x)^n}{n!}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.