Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.10 Exercises - Page 673: 10

Answer

$\Sigma_{n=1}^{\infty} (-1)^{n+1} \dfrac{x^{2n}}{n}$

Work Step by Step

Here, we have: $f(x)=\ln (x^2+1) \implies f(0)=0\\ f'(x)=\dfrac{2x}{x^2+1} \implies f'(0)=0\\ f''(x)=\dfrac{2-2x^2}{(x^2+1)^2}\implies f''0)=2$ and so on. The Taylor series of a function $f(x)$ at $x=c$ can be written as: $T(x)=f(a)+\dfrac{f'(a)}{1!}(x-a)+\dfrac{f''(a)}{2!}(x-a)^2+.......$ Hence, the required Taylor series is: $T(x)=0+0(x-0)+\dfrac{2}{2!}(x-0)^2+0(x-0)^3+....=x^2-\dfrac{x^4}{2}+\dfrac{x^6}{3}+....=\Sigma_{n=1}^{\infty} (-1)^{n+1} \dfrac{x^{2n}}{n}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.