Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.10 Exercises - Page 673: 34

Answer

$\cos \ \pi x =\Sigma_{n=0}^{\infty} (-1)^{n} \dfrac{\pi^{2n}(x)^{2n}}{(2n)!}$

Work Step by Step

We know that the Maclaurin series for $\cos x=\Sigma_{n=0}^{\infty} (-1)^{n} \dfrac{(x)^{2n}}{(2n)!}=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+..... $ Replace $x$ with $\pi x$ in the above series. $\cos \pi x=1-\dfrac{(\pi x)^2}{2!}+\dfrac{(\pi x)^4}{4!}-\dfrac{(\pi x)^6}{6!}+..... =1-\dfrac{\pi^2 x^2}{2}+\dfrac{\pi^4 x^4}{24}-.......$ Thus, our required series is: $\cos \ \pi x =\Sigma_{n=0}^{\infty} (-1)^{n} \dfrac{\pi^{2n}(x)^{2n}}{(2n)!}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.