Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.6 Exercises - Page 555: 51

Answer

$$u\arctan u - \ln \sqrt {1 + {u^2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\arctan u} du \cr & {\text{Use integration by parts}} \cr & t = \arctan u,{\text{ }}dt = \frac{1}{{1 + {u^2}}}du \cr & dv = du,{\text{ }}v = u \cr & \int {tdv} = tv - \int {vdt} \cr & {\text{Substituting}} \cr & \int {\arctan u} du = \left( {\arctan u} \right)\left( u \right) - \int u \left( {\frac{1}{{1 + {u^2}}}} \right)du \cr & \int {\arctan u} du = u\arctan u - \int {\frac{u}{{1 + {u^2}}}} du \cr & {\text{Rewrite}} \cr & \int {\arctan u} du = u\arctan u - \frac{1}{2}\int {\frac{{2u}}{{1 + {u^2}}}} du \cr & {\text{Recall that }}\int {\frac{{dt}}{t} = \ln \left| t \right| + C} \cr & \int {\arctan u} du = u\arctan u - \frac{1}{2}\ln \left| {1 + {u^2}} \right| + C \cr & = u\arctan u - \frac{1}{2}\ln \left( {1 + {u^2}} \right) + C \cr & {\text{Use logarithmic properties}} \cr & = u\arctan u - \ln \sqrt {1 + {u^2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.