Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.6 Exercises - Page 555: 47

Answer

$$ \frac{1}{{{b^3}}}\left( {bu - 2a\ln \left| {a + bu} \right| - \frac{{{a^2}}}{{a + bu}}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{u^2}}}{{{{\left( {a + bu} \right)}^2}}}} du \cr & {\text{Expand the denominator}} \cr & = \int {\frac{{{u^2}}}{{{a^2} + 2abu + {b^2}{u^2}}}} du \cr & {\text{By long division}} \cr & \frac{{{u^2}}}{{{a^2} + 2abu + {b^2}{u^2}}} = \frac{1}{{{b^2}}} + \frac{{ - \frac{{2a}}{b}u - \frac{{{a^2}}}{{{b^2}}}}}{{{a^2} + 2abu + {b^2}{u^2}}} \cr & = \int {\left( {\frac{1}{{{b^2}}} - \frac{{\frac{{2a}}{b}u + \frac{{{a^2}}}{{{b^2}}}}}{{{{\left( {a + bu} \right)}^2}}}} \right)} du \cr & {\text{Decompose }}\frac{{\frac{{2a}}{b}u + \frac{{{a^2}}}{{{b^2}}}}}{{{{\left( {a + bu} \right)}^2}}}{\text{ into partial fractions}} \cr & \frac{{\frac{{2a}}{b}u + \frac{{{a^2}}}{{{b^2}}}}}{{{{\left( {a + bu} \right)}^2}}} = \frac{A}{{a + bu}} + \frac{B}{{{{\left( {a + bu} \right)}^2}}} \cr & \frac{{2a}}{b}u + \frac{{{a^2}}}{{{b^2}}} = A\left( {a + bu} \right) + B \cr & \frac{{2a}}{b}u + \frac{{{a^2}}}{{{b^2}}} = Aa + Abu + B \cr & \frac{{2a}}{b}u + \frac{{{a^2}}}{{{b^2}}} = Abu + \left( {Aa + B} \right) \cr & {\text{Equating coefficients}} \cr & Ab = \frac{{2a}}{b} \to A = \frac{{2a}}{{{b^2}}} \cr & Aa + B = \frac{{{a^2}}}{{{b^2}}} \to B = \frac{{{a^2}}}{{{b^2}}} - \frac{{2{a^2}}}{{{b^2}}} = - \frac{{{a^2}}}{{{b^2}}} \cr & {\text{Therefore,}} \cr & \frac{{\frac{{2a}}{b}u + \frac{{{a^2}}}{{{b^2}}}}}{{{{\left( {a + bu} \right)}^2}}} = \frac{{2a}}{{{b^2}\left( {a + bu} \right)}} - \frac{{{a^2}}}{{{b^2}{{\left( {a + bu} \right)}^2}}} \cr & = \int {\left( {\frac{1}{{{b^2}}} - \frac{{2a}}{{{b^2}\left( {a + bu} \right)}} + \frac{{{a^2}}}{{{b^2}{{\left( {a + bu} \right)}^2}}}} \right)} du \cr & = \int {\frac{1}{{{b^2}}}} du - \int {\frac{{2a}}{{{b^2}\left( {a + bu} \right)}}du + \int {\frac{{{a^2}}}{{{b^2}{{\left( {a + bu} \right)}^2}}}du} } \cr & = \frac{1}{{{b^2}}}\int {du} - \frac{{2a}}{{{b^2}}}\int {\frac{1}{{a + bu}}du + \frac{{{a^2}}}{{{b^2}}}\int {\frac{1}{{{{\left( {a + bu} \right)}^2}}}du} } \cr & {\text{Integrating}} \cr & = \frac{1}{{{b^2}}}u - \frac{{2a}}{{{b^3}}}\ln \left| {a + bu} \right| - \frac{{{a^2}}}{{{b^3}\left( {a + bu} \right)}} + C \cr & {\text{Factoring}} \cr & = \frac{1}{{{b^3}}}\left( {bu - 2a\ln \left| {a + bu} \right| - \frac{{{a^2}}}{{a + bu}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.