Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.6 Exercises - Page 555: 35

Answer

$$\frac{1}{2}\ln \left| {{x^2} - 3 + \sqrt {{x^4} - 6{x^2} + 5} } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{\sqrt {{x^4} - 6{x^2} + 5} }}} dx \cr & {\text{Complete the square}} \cr & \int {\frac{x}{{\sqrt {\left( {{x^4} - 6{x^2} + 5 + 4} \right) - 4} }}} dx \cr & \int {\frac{x}{{\sqrt {\left( {{x^4} - 6{x^2} + 9} \right) - 4} }}} dx \cr & \int {\frac{x}{{\sqrt {{{\left( {{x^2} - 3} \right)}^2} - {2^2}} }}} dx \cr & {\text{Let }}u = {x^2} - 3,{\text{ }}du = 2xdx,{\text{ }}dx = \frac{{du}}{{2x}} \cr & {\text{Substituting}} \cr & \int {\frac{x}{{\sqrt {{{\left( {{x^2} - 3} \right)}^2} - {2^2}} }}} dx = \int {\frac{x}{{\sqrt {{u^2} - {2^2}} }}} \left( {\frac{{du}}{{2x}}} \right) \cr & = \frac{1}{2}\int {\frac{1}{{\sqrt {{u^2} - {2^2}} }}} du \cr & {\text{Integrate by tables }}\int {\frac{1}{{\sqrt {{u^2} - {a^2}} }}du} = \ln \left| {{x^4} - 6{x^2} + 5} \right| + C \cr & \frac{1}{2}\int {\frac{1}{{\sqrt {{u^2} - {2^2}} }}} du = \frac{1}{2}\ln \left| {u + \sqrt {{u^2} - {2^2}} } \right| + C \cr & = \frac{1}{2}\ln \left| {u + \sqrt {{u^2} - 4} } \right| + C \cr & {\text{Write in terms of }}x \cr & = \frac{1}{2}\ln \left| {{x^2} - 3 + \sqrt {{{\left( {{x^2} - 3} \right)}^2} - 4} } \right| + C \cr & = \frac{1}{2}\ln \left| {{x^2} - 3 + \sqrt {{x^4} - 6{x^2} + 5} } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.