Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.6 Exercises - Page 555: 32

Answer

$$\frac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^x}}}{{{{\left( {1 - {e^{2x}}} \right)}^{3/2}}}}} dx \cr & {\text{Let }}u = {e^x}.{\text{ Then }}du = {e^x}dx,{\text{ }}dx = \frac{1}{{{e^x}}}du \cr & {\text{Substituting you have}} \cr & \int {\frac{{{e^x}}}{{{{\left( {1 - {e^{2x}}} \right)}^{3/2}}}}} dx = \int {\frac{{{e^x}}}{{{{\left( {1 - {u^2}} \right)}^{3/2}}}}\frac{1}{{{e^x}}}} du \cr & = \int {\frac{1}{{{{\left( {1 - {u^2}} \right)}^{3/2}}}}} du \cr & {\text{From the table of integrals in the back of the book}} \cr & \int {\frac{1}{{{{\left( {{a^2} - {u^2}} \right)}^{3/2}}}}} du = \frac{u}{{{a^2}\sqrt {{a^2} - {u^2}} }} + C \cr & \int {\frac{1}{{{{\left( {1 - {u^2}} \right)}^{3/2}}}}} du = \frac{u}{{\sqrt {1 - {u^2}} }} + C \cr & {\text{Write in terms of }}x,{\text{ }}u = {e^x} \cr & = \frac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.