Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.5 Exercises - Page 549: 26

Answer

$$1 - \ln 3$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{{x^2} - x}}{{{x^2} + x + 1}}} dx \cr & {\text{By long division}} \cr & \frac{{{x^2} - x}}{{{x^2} + x + 1}} = 1 - \frac{{2x + 1}}{{{x^2} + x + 1}} \cr & {\text{Therefore,}} \cr & \int_0^1 {\frac{{{x^2} - x}}{{{x^2} + x + 1}}} dx = \int_0^1 {\left( {1 - \frac{{2x + 1}}{{{x^2} + x + 1}}} \right)} dx \cr & {\text{Integrating }} \cr & = \left[ {x - \ln \left| {{x^2} + x + 1} \right|} \right]_0^1 \cr & = \left[ {1 - \ln \left| {{1^2} + 1 + 1} \right|} \right] - \left[ {0 - \ln \left| {{0^2} + 0 + 1} \right|} \right] \cr & = \left[ {1 - \ln \left| 3 \right|} \right] - \left[ {0 - \ln \left| 1 \right|} \right] \cr & = 1 - \ln 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.