Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.5 Exercises - Page 549: 24

Answer

$$2\ln \left| {\frac{5}{6}} \right| - \frac{4}{5}$$

Work Step by Step

$$\eqalign{ & \int_1^5 {\frac{{x - 1}}{{{x^2}\left( {x + 1} \right)}}} dx \cr & {\text{Integrating }}\int {\frac{{x - 1}}{{{x^2}\left( {x + 1} \right)}}} dx \cr & \frac{{x - 1}}{{{x^2}\left( {x + 1} \right)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} \cr & x - 1 = Ax\left( {x + 1} \right) + B\left( {x + 1} \right) + C{x^2} \cr & x - 1 = A{x^2} + Ax + Bx + B + C{x^2} \cr & x - 1 = \left( {A{x^2} + C{x^2}} \right) + \left( {Ax + Bx} \right) + B \cr & {\text{Comparing coefficients}} \cr & A + C = 0 \cr & A + B = 1 \cr & B = - 1 \cr & {\text{Solving the system of equations simultaneously}} \cr & B = - 1,{\text{ }}A = 2,{\text{ }}C = - 2 \cr & \frac{{x - 1}}{{{x^2}\left( {x + 1} \right)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} \cr & \frac{{x - 1}}{{{x^2}\left( {x + 1} \right)}} = \frac{2}{x} - \frac{1}{{{x^2}}} - \frac{2}{{x + 1}} \cr & \int_1^5 {\frac{{x - 1}}{{{x^2}\left( {x + 1} \right)}}} dx = \int_1^5 {\left( {\frac{2}{x} - \frac{1}{{{x^2}}} - \frac{2}{{x + 1}}} \right)} dx \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {2\ln \left| x \right| + \frac{1}{x} - 2\ln \left| {x + 1} \right|} \right]_1^5 \cr & {\text{ = }}\left[ {2\ln \left| {\frac{x}{{x + 1}}} \right| + \frac{1}{x}} \right]_1^5 \cr & = \left[ {2\ln \left| {\frac{5}{{5 + 1}}} \right| + \frac{1}{5}} \right] - \left[ {2\ln \left| {\frac{1}{1}} \right| + \frac{1}{1}} \right] \cr & = 2\ln \left| {\frac{5}{6}} \right| + \frac{1}{5} - 1 \cr & = 2\ln \left| {\frac{5}{6}} \right| - \frac{4}{5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.