Answer
$y=\ln(4+e^{x})$$+C$
Work Step by Step
$\frac{dy}{dx}$=$\frac{e^{x}}{(4+e^{x})}$
$y=$$\int\frac{e^{x}}{(4+e^{x})}$$dx$
if $u=(4+e^x)$, $\frac{du}{dx}$$=$$e^{x}$, then $\frac{1}{e^{x}}$$du$$=dx$
$y=$$\int\frac{e^{x}}{u}$$\frac{1}{e^{x}}$$du$
$y=\ln(u)$$+C$
$y=\ln(4+e^{x})$$+C$