Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.1 Exercises - Page 404: 40

Answer

Plugging $y$ into the differential equation verifies that it is indeed a solution. The particular solution that satisfies the initial conditions is $y = 4e^{2x/3}(1 - x/3)$.

Work Step by Step

If $y = e^{2x/3}(C_1 + C_2x)$, then its first derivative is $y' = \frac{2}{3}e^{2x/3}\cdot(C_1 + C_2x) + e^{2x/3}\cdot (C_2) = e^{2x/3}(\frac{2}{3}C_1 +C_2 + \frac{2}{3}C_2x)$ and its second derivative is $y''=\frac{2}{3}e^{2x/3}\cdot(\frac{2}{3}C_1 +C_2 + \frac{2}{3}C_2x) + e^{2x/3}\cdot(\frac{2}{3}C_2) = e^{2x/3}(\frac{4}{9}C_1 + \frac{4}{3}C_2 + \frac{4}{9}C_2x)$ So plugging these into the left-hand side of $9y''-12y'+4y=0$ yields $e^{2x/3}[9(\frac{4}{9}C_1 + \frac{4}{3}C_2 + \frac{4}{9}C_2x)-12(\frac{2}{3}C_1 +C_2 + \frac{2}{3}C_2x)+4(C_1 + C_2x)]$ $= e^{2x/3}[4C_1 + 12C_2 + 4C_2x-8C_1-12C_2-8C_2x+4C_1+4C_2x] = e^{2x/3}[(4-8+4)C_1+(12-12)C_2 + (4 - 8 + 4)C_2x] = 0$ So the general solution does indeed satisfy the differential equation. The initial conditions imply: $4 = e^{2\cdot 0/3}(C_1 + C_2\cdot 0)=C_1\implies C_1=4$ $0 = e^{2}(C_1 + 3C_2)\implies C_2 = -\frac{1}{3}C_1 = -\frac{4}{3}$ So the particular solution that satisfies the initial conditions is $y = 4e^{2x/3}(1 - x/3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.