Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.7 Exercises - Page 380: 46

Answer

$$\frac{\pi }{{12}}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{dx}}{{2\sqrt {3 - x} \sqrt {x + 1} }}} \cr & {\text{Let }}u = \sqrt {x + 1} ,{\text{ }}x = {u^2} - 1,{\text{ }}dx = 2udu \cr & {\text{The new limits of integration are:}} \cr & x = 0 \to u = 1 \cr & x = 1 \to u = \sqrt 2 \cr & {\text{Substituting}} \cr & \int_0^1 {\frac{{dx}}{{2\sqrt {3 - x} \sqrt {x + 1} }}} = \int_1^{\sqrt 2 } {\frac{{2u}}{{2\sqrt {3 - \left( {{u^2} - 1} \right)} u}}} du \cr & = \int_1^{\sqrt 2 } {\frac{1}{{\sqrt {4 - {u^2}} }}} du \cr & {\text{Integrating}} \cr & = \left[ {{{\sin }^{ - 1}}\left( {\frac{u}{2}} \right)} \right]_1^{\sqrt 2 } \cr & = {\sin ^{ - 1}}\left( {\frac{{\sqrt 2 }}{2}} \right) - {\sin ^{ - 1}}\left( {\frac{1}{2}} \right) \cr & {\text{Simplifying}} \cr & = \frac{\pi }{4} - \frac{\pi }{6} \cr & = \frac{\pi }{{12}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.