Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.7 Exercises - Page 380: 39

Answer

$$ - 2\sqrt 3 + \frac{1}{6}\pi + 4$$

Work Step by Step

$$\eqalign{ & \int_2^3 {\frac{{2x - 3}}{{\sqrt {4x - {x^2}} }}} dx \cr & {\text{Completing the square}} \cr & \int_2^3 {\frac{{2x - 3}}{{\sqrt {4x - {x^2}} }}} dx = \int_2^3 {\frac{{2x - 3}}{{\sqrt {4 - {{\left( {x - 2} \right)}^2}} }}} dx \cr & {\text{Let }}u = x - 2,{\text{ }}x = u + 2,{\text{ }}dx = du,{\text{ }} \cr & {\text{The new limits of integration are}} \cr & x = 3 \Rightarrow u = 3 - 2 = 1 \cr & x = 2 \Rightarrow u = 2 - 2 = 0 \cr & \int_2^3 {\frac{{2x - 3}}{{\sqrt {4 - {{\left( {x - 2} \right)}^2}} }}} dx = \int_0^1 {\frac{{2\left( {u + 2} \right) - 3}}{{\sqrt {4 - {u^2}} }}} du \cr & = \int_0^1 {\frac{{2u + 1}}{{\sqrt {4 - {u^2}} }}} du \cr & = \int_0^1 {\left( {\frac{{2u}}{{\sqrt {4 - {u^2}} }} + \frac{1}{{\sqrt {4 - {u^2}} }}} \right)} du \cr & {\text{Integrating}} \cr & = \left[ { - 2\sqrt {4 - {u^2}} + {{\sin }^{ - 1}}\left( {\frac{u}{2}} \right)} \right]_0^1 \cr & = \left[ { - 2\sqrt {4 - {1^2}} + {{\sin }^{ - 1}}\left( {\frac{1}{2}} \right)} \right] - \left[ { - 2\sqrt {4 - 0} + {{\tan }^{ - 1}}\left( {\frac{0}{2}} \right)} \right] \cr & = - 2\sqrt 3 + \frac{1}{6}\pi + 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.