Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.7 Exercises - Page 380: 29

Answer

$$\frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & \int_{\pi /2}^\pi {\frac{{\sin x}}{{1 + {{\cos }^2}x}}} dx \cr & {\text{Let }}u = \cos x,{\text{ }}du = - \sin xdx,{\text{ }}dx = - \frac{1}{{\sin x}}du \cr & {\text{The new limits of integration are}} \cr & x = \pi ,{\text{ }}u = \cos \pi = - 1 \cr & x = \pi /2,{\text{ }}u = \cos \frac{\pi }{2} = 0 \cr & {\text{Substituting}} \cr & \int_{\pi /2}^\pi {\frac{{\sin x}}{{1 + {{\cos }^2}x}}} dx = \int_0^{ - 1} {\frac{{\sin x}}{{1 + {u^2}}}} \left( { - \frac{1}{{\sin x}}} \right)du \cr & = - \int_0^{ - 1} {\frac{1}{{1 + {u^2}}}} du \cr & {\text{Integrating using basic integration rules}} \cr & = - \left[ {{{\tan }^{ - 1}}u} \right]_0^{ - 1} \cr & = - \left[ {{{\tan }^{ - 1}}\left( { - 1} \right) - {{\tan }^{ - 1}}\left( 0 \right)} \right] \cr & = - \left[ { - \frac{\pi }{4} - 0} \right] \cr & = \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.