Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 336: 98

Answer

$S(t)=100(\displaystyle \frac{\ln t}{\ln 2}+1)$

Work Step by Step

$\displaystyle \frac{dS}{dt}$ is inversely proportional to time t, so there exists a k such that $\displaystyle \frac{dS}{dt} =\displaystyle \frac{k}{t},\quad (t > 1)$ $S(t)=\displaystyle \int\frac{k}{t}dt=k\int\frac{1}{t}dt$ $S(t)=k\ln|t|+C\qquad (*)$ Since $t > 1$, we can drop the absolute brackets. To find k and C, we use the given data, $S(2)=400$, and $S(4)=300:$ $k\ln 2+C=200$ $k\ln 4+C=300$ Subtract the first from the second equation: ... and ... $\ln 4=\ln 2^{2}=2\ln 2$ $k(2\ln 2-\ln 2)=100$ $k(\ln 2)=100$ $k=\displaystyle \frac{100}{\ln 2}$ Back substitute into $k\ln 2+C=200$, $\displaystyle \frac{100}{\ln 2}\cdot\ln 2+C=200$ $100+C=200$ $C=100$ So, substituting k and C in (*), $S(t)=\displaystyle \frac{100}{\ln 2}\cdot\ln t+100$ $S(t)=100(\displaystyle \frac{\ln t}{\ln 2}+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.