Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 336: 94

Answer

$2\displaystyle \ln 2+\frac{1}{2}\approx 1.8863$

Work Step by Step

see definition on p.281. Average value =$\displaystyle \frac{1}{b-a}\int_{a}^{b}f(x)dx$ Using the given data, Average value =$\displaystyle \frac{1}{4-2}\int_{2}^{4}\frac{4(x+1)}{x^{2}}dx$ $\displaystyle \int\frac{4x+4}{x^{2}}dx=\int\frac{4x}{x^{2}}dx+\int\frac{4}{x^{2}}dx$ $=4(\displaystyle \int\frac{dx}{x}+\int x^{-2}dx) \qquad $Log rule, Power rule $=4(\displaystyle \ln|x|+\frac{x^{-1}}{1})+C$ Average value =$ \displaystyle \frac{1}{2}\cdot 4[\ln|x|-\frac{1}{x}]_{2}^{4}$ $=2[(\displaystyle \ln 4-\frac{1}{4})-(\ln 2-\frac{1}{2})]$ $=2(2\displaystyle \ln 2-\frac{1}{4}-\ln 2+\frac{1}{2})$ $=2\displaystyle \ln 2+\frac{1}{2}\approx 1.8863$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.