Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 336: 95

Answer

$\displaystyle \frac{1}{e-1}\approx 0.58198$

Work Step by Step

see definition on p.281. Average value =$\displaystyle \frac{1}{b-a}\int_{a}^{b}f(x)dx$ Using the given data, Average value =$\displaystyle \frac{1}{e-1}\int_{1}^{e}\frac{2\ln x}{x}dx$ Find the indefinite integral, $\displaystyle \int\frac{2\ln x}{x}dx= \left[\begin{array}{l} u=\ln x\\ du=\frac{dx}{x} \end{array}\right] = 2\int udu$ $=2\displaystyle \cdot\frac{u^{2}}{2}+C=u^{2}+C =(\ln x)^{2}+C$ Average value =$\displaystyle \frac{1}{e-1}[(\ln x)^{2}]_{1}^{e}$ $=\displaystyle \frac{1}{e-1}(1^{2}-0)$ $=\displaystyle \frac{1}{e-1}\approx 0.58198$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.