Answer
$\int_C (3y-x)dx+y^2 dy = \frac{916}{3}$
Work Step by Step
$x = 2t, y = 10t, dx = 2dt, dy = 10 dt$
$\therefore \int_C (3y-x)dx+y^2 dy\\
= \int_{t=0}^1 2(30t-2t)dt + 1000t^2dt\\
=[\frac{1000t^3}{3} - \frac{56t^2}{2}]_0^1 = \frac{916}{3}$