Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1063: 49

Answer

$\int_C \textbf F \cdot d\textbf r = 0$

Work Step by Step

$\textbf r(t) = t \textbf i + t^2 \textbf j = x(t) \textbf i + y(t) \textbf j$ It follows that $x(t) = t , y(t) = t^2$ $\therefore \textbf r' = \textbf i +2 t \textbf j \\ \textbf F(x,y) = (x^3-2x^2)\textbf i + (x-\frac{y}{2}) \textbf j\\ \Rightarrow \textbf F (x(t),y(t))= [t^3- 2t^2] \textbf i + [t-\frac{t^2}{2}] \textbf j\\ \int_C \textbf F \cdot d\textbf r\\ = \int_C \textbf F \cdot \textbf r' dt\\ = \int ( [t^3- 2t^2] \textbf i + [t-\frac{t^2}{2}] \textbf j )\cdot ( \textbf i +2 t \textbf j ) dt\\ = \int (t^3-2t^2+2t^2-t^3) dt\\ =0$ (proved)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.