Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1061: 26

Answer

$$2 \pi \sqrt {13} (k+3 \pi)$$

Work Step by Step

Since, $ds=\sqrt {(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2+(\dfrac{dy}{dt})^2} dt$ We have: $x=2\cos t \implies \dfrac{dx}{dt}=-2 \sin t$ and $y=2 \sin t \implies \dfrac{dy}{dt}= 2 \cos t$ and $z=3 \implies \dfrac{dz}{dt}=3$ So, $P(x,y) =ds=\sqrt { (-2 \sin t)^2+ (2 \cos t)^2 +(3)^2}dt= \sqrt {13} \ dt$ We have: $\rho=k+z=k+3t$ So, the mass the wire can be computed as: $$\int_C \rho \ ds= \sqrt {13} \int_{0}^{2 \pi} k+3t \ dt$$ So, $$\int_C \rho \ ds=\sqrt {13} \int_{0}^{2 \pi} k+3t \ dt \\=\sqrt {13} [kt+\dfrac{3t^2}{2}]_0^{2 \pi} \\= 2 \pi \sqrt {13} (k+3 \pi)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.