Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1061: 25

Answer

$$\dfrac{k(41\sqrt {41}-27)}{12}$$

Work Step by Step

Since, $ds=\sqrt {(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2} dt$ We have: $x= t^2 \implies \dfrac{dx}{dt}=2t$ and $y=2t \implies \dfrac{dy}{dt}= 2$ and $z=t \implies \dfrac{dz}{dt}=1$ So, $P(x,y) =ds=\sqrt { (2t)^2+ (2)^2 +1^2}dt= \sqrt {4t^2+5} \ dt$ We have: $\rho=kz=kt$ So, the mass the wire can be computed as: $$\int_C \rho \ ds= k \int_{1}^{3} t \sqrt {4t^2+5} \ dt$$ Substitute $a=4t^2+5 \implies da=8t \ dt$ So, $$\int_C \rho \ ds=k \int_{1}^{3} t \sqrt {4t^2+5} \ dt\\=\dfrac{k}{8} \int_9^{41} [\dfrac{2a^{3/2}}{3} ]_9^{41}\\=\dfrac{k(41\sqrt {41}-27)}{12}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.