Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1061: 16

Answer

a) We need to write the parametrization function. $x(t)=0; y(t)=t^2$ where $1 \leq t \leq 3$ Since, $ds=\sqrt {(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2} dt$ We have: $x=0 \implies \dfrac{dx}{dt}=0$ and $y=t^2 \implies \dfrac{dy}{dt}=2 t$ So, $P(x,y) =ds=\sqrt {(0)^2+(2 t)^2} dt=2t \ dt$ b) $\dfrac{208}{3}$

Work Step by Step

a) We need to write the parametrization function. $x(t)=0; y(t)=t^2$ where $1 \leq t \leq 3$ Since, $ds=\sqrt {(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2} dt$ We have: $x=0 \implies \dfrac{dx}{dt}=0$ and $y=t^2 \implies \dfrac{dy}{dt}=2 t$ So, $P(x,y) =ds=\sqrt {(0)^2+(2 t)^2} dt=2t \ dt$ b) We need to re-write the line integral in terms of $t$ to simplify the integral by using parametric equations. Now, the line integral is: $\int_C (x+4\sqrt y) ds= \int_1^{3} 4\sqrt {t^2} dt(2t \ dt) \\=[8\dfrac{t^3}{3}]_{1}^{3}\\=72-\dfrac{8}{3}\\=\dfrac{208}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.