Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1061: 24

Answer

$$2\sqrt 2-1$$

Work Step by Step

Since, $ds=\sqrt {(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2} dt$ We have: $x= t^2 \implies \dfrac{dx}{dt}=2t$ and $y=2t \implies \dfrac{dy}{dt}= 2$ So, $P(x,y) =ds=\sqrt { (2t)^2+ (2)^2 }dt= 2 \sqrt {t^2+1} \ dt$ The mass the wire can be computed as: $$\int_C \rho \ ds= \dfrac{3}{2} \int_{0}^{1} 2 \sqrt {t^2+1} \ dt$$ Substitute $a=t^2+1 \implies da=2t$ So, $$\int_C \rho \ ds=\dfrac{3}{2} \int_{1}^{2} a^{1/2} \ da\\=\dfrac{3}{2}[\dfrac{2a^{3/2}}{2}]_1^2\\=2\sqrt 2-1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.