Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 984: 51

Answer

$$2$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = x \cr & {\text{From the image of the rectangle shown below we obtain}} \cr & {\text{the region }}R \cr & R = \left\{ {\left. {\left( {x,y} \right)} \right|0 \leqslant x \leqslant 4,{\text{ }}0 \leqslant y \leqslant 2} \right\} \cr & {\text{The area }}A{\text{ of the region is:}} \cr & A = \left( {4 - 0} \right)\left( {2 - 0} \right) \cr & A = 8 \cr & {\text{The average Value of a Function Over a Region }}R{\text{ is}} \cr & {\text{Average value}} = \frac{1}{A}\iint\limits_R {f\left( {x,y} \right)}dA,{\text{ then}} \cr & {\text{Average value}} = \frac{1}{8}\int_0^4 {\int_0^2 x dydx} \cr & = \frac{1}{8}\int_0^4 {\left[ {\int_0^2 x dy} \right]dx} \cr & {\text{Integrate with respect to }}y \cr & = \frac{1}{8}\int_0^4 {\left[ {xy} \right]_0^2dx} \cr & = \frac{1}{8}\int_0^4 {2xdx} \cr & {\text{Integrate}} \cr & = \frac{1}{8}\left[ {{x^2}} \right]_0^4 \cr & = \frac{{{4^2}}}{8} \cr & = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.