Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 984: 49

Answer

$$\frac{1}{3}\left( {2\sqrt 2 - 1} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^{\arccos y} {\sin x\sqrt {1 + {{\sin }^2}x} } dxdy} \cr & {\text{Switching the order of integration, the new region }}R{\text{ is}} \cr & R = \left\{ {\left. {\left( {x,y} \right)} \right|0 \leqslant y \leqslant \cos x,{\text{ }}0 \leqslant x \leqslant \frac{\pi }{2}} \right\} \cr & {\text{Therefore,}} \cr & \int_0^1 {\int_0^{\arccos y} {\sin x\sqrt {1 + {{\sin }^2}x} } dxdy} = \int_0^{\pi /2} {\int_0^{\cos x} {\sin x\sqrt {1 + {{\sin }^2}x} } dydx} \cr & = \int_0^{\pi /2} {\left[ {\int_0^{\cos x} {\sin x\sqrt {1 + {{\sin }^2}x} dy} } \right]} dx \cr & {\text{Integrate with respect to }}y \cr & = \int_0^{\pi /2} {\left[ {\sin x\sqrt {1 + {{\sin }^2}x} y} \right]} _0^{\cos x}dx \cr & = \int_0^{\pi /2} {\sin x\sqrt {1 + {{\sin }^2}x} \left( {\cos x} \right)} dx \cr & = \int_0^{\pi /2} {\sqrt {1 + {{\sin }^2}x} \left( {\sin x\cos x} \right)} dx \cr & {\text{Let }}u = 1 + {\sin ^2}x,\,{\text{ }}du = 2\sin x\cos xdx \cr & = \frac{1}{2}\int_1^2 {\sqrt u } du \cr & {\text{Integrating}} \cr & = \frac{1}{2}\left[ {\frac{2}{3}{u^{3/2}}} \right]_1^2 \cr & = \frac{1}{3}\left[ {{u^{3/2}}} \right]_1^2 \cr & = \frac{1}{3}\left( {2\sqrt 2 - 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.