Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 984: 50

Answer

$$2\sqrt 2 \sin \left( 2 \right) + \sqrt 2 \cos \left( 2 \right) - \sqrt 2 $$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_{\left( {1/2} \right){x^2}}^2 {\sqrt y \cos y} dydx} \cr & y = \frac{1}{2}{x^2} \to x = \sqrt {2y} \cr & {\text{Switching the order of integration, the new region }}R{\text{ is}} \cr & R = \left\{ {\left. {\left( {x,y} \right)} \right|0 \leqslant x \leqslant \sqrt {2y} ,{\text{ }}0 \leqslant y \leqslant 2} \right\} \cr & {\text{Therefore,}} \cr & \int_0^2 {\int_{\left( {1/2} \right){x^2}}^2 {\sqrt y \cos y} dydx} = \int_0^2 {\int_0^{\sqrt {2y} } {\sqrt y \cos y} dxdy} \cr & = \int_0^2 {\left[ {\int_0^{\sqrt {2y} } {\sqrt y \cos y} dx} \right]dy} \cr & {\text{Integrate with respect to }}x \cr & = \int_0^2 {\left[ {x\sqrt y \cos y} \right]_0^{\sqrt {2y} }dy} \cr & = \int_0^2 {\left[ {\sqrt {2y} \sqrt y \cos y - 0\sqrt y \cos y} \right]dy} \cr & = \sqrt 2 \int_0^2 {y\cos ydy} \cr & {\text{Integrating by parts, we obtain}} \cr & = \sqrt 2 \int_0^2 {y\cos ydy} \cr & = \sqrt 2 \left[ {y\sin y + \cos y} \right]_0^2 \cr & = \sqrt 2 \left[ {2\sin \left( 2 \right) + \cos \left( 2 \right)} \right] - \sqrt 2 \left[ {0\sin \left( 0 \right) + \cos \left( 0 \right)} \right] \cr & = 2\sqrt 2 \sin \left( 2 \right) + \sqrt 2 \cos \left( 2 \right) - \sqrt 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.