Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 984: 48

Answer

$$\frac{3}{8}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^3 {\int_{y/3}^1 {\frac{1}{{1 + {x^4}}}} dxdy} \cr & {\text{Switching the order of integration, the new region }}R{\text{ is}} \cr & R = \left\{ {\left. {\left( {x,y} \right)} \right|0 \leqslant y \leqslant 3x,{\text{ }}0 \leqslant x \leqslant 1} \right\} \cr & {\text{Therefore,}} \cr & \int_0^3 {\int_{y/3}^1 {\frac{1}{{1 + {x^4}}}} dxdy} = \int_0^1 {\int_0^{3x} {\frac{1}{{1 + {x^4}}}} dydx} \cr & = \int_0^1 {\left[ {\int_0^{3x} {\frac{1}{{1 + {x^4}}}} dy} \right]} dx \cr & {\text{Integrate with respect to }}y \cr & = \int_0^1 {\left[ {\frac{y}{{1 + {x^4}}}} \right]_0^{3x}} dx \cr & = \int_0^1 {\left[ {\frac{{3x}}{{1 + {x^4}}} - \frac{0}{{1 + {x^4}}}} \right]} dx \cr & = 3\int_0^1 {\frac{x}{{1 + {x^4}}}} dx \cr & = \frac{3}{2}\int_0^1 {\frac{{2x}}{{1 + {{\left( {{x^2}} \right)}^2}}}} dx \cr & {\text{Integrate}} \cr & = \frac{3}{2}\left[ {{{\tan }^{ - 1}}\left( {{x^2}} \right)} \right]_0^1 \cr & = \frac{3}{2}\left[ {{{\tan }^{ - 1}}\left( {{1^2}} \right) - {{\tan }^{ - 1}}\left( 0 \right)} \right] \cr & = \frac{3}{2}\left( {\frac{\pi }{4} - 0} \right) \cr & = \frac{3}{8}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.