Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 984: 45

Answer

$$1 - {e^{ - 1/4}}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_{y/2}^{1/2} {{e^{ - {x^2}}}} dxdy} \cr & = \int_{y = 0}^{y = 1} {\int_{x = y/2}^{x = 1/2} {{e^{ - {x^2}}}} dxdy} \cr & x = \frac{y}{2} \to y = 2x \cr & \left( {{\text{Graph below}}} \right) \cr & {\text{Switching the order of integration, the new region }}R{\text{ is}} \cr & R = \left\{ {\left. {\left( {x,y} \right)} \right|0 \leqslant y \leqslant 2x,{\text{ }}0 \leqslant x \leqslant \frac{1}{2}} \right\} \cr & {\text{Therefore,}} \cr & \int_0^1 {\int_{y/2}^{1/2} {{e^{ - {x^2}}}} dxdy} = \int_0^{1/2} {\int_0^{2x} {{e^{ - {x^2}}}} dydx} \cr & = \int_0^{1/2} {\left[ {\int_0^{2x} {{e^{ - {x^2}}}} dy} \right]dx} \cr & {\text{Integrate with respect to }}y \cr & = \int_0^{1/2} {\left[ {{e^{ - {x^2}}}y} \right]_0^{2x}dx} \cr & = \int_0^{1/2} {2x{e^{ - {x^2}}}dx} \cr & = - \int_0^{1/2} {{e^{ - {x^2}}}\left( { - 2x} \right)dx} \cr & {\text{Integrate}} \cr & = - \left[ {{e^{ - {x^2}}}} \right]_0^{1/2} \cr & = - \left( {{e^{ - {{\left( {1/2} \right)}^2}}} - {e^{ - {{\left( 0 \right)}^2}}}} \right) \cr & = - {e^{ - 1/4}} - 1 \cr & = 1 - {e^{ - 1/4}} \approx 0.2211 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.