Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 984: 47

Answer

$$\frac{{64}}{3}$$

Work Step by Step

$$\eqalign{ & \int_{ - 2}^2 {\int_{ - \sqrt {4 - {x^2}} }^{\sqrt {4 - {x^2}} } {\sqrt {4 - {y^2}} } dydx} \cr & {\text{Switching the order of integration, the new region }}R{\text{ is}} \cr & R = \left\{ {\left. {\left( {x,y} \right)} \right| - \sqrt {4 - {y^2}} \leqslant x \leqslant \sqrt {4 - {y^2}} ,{\text{ }} - 2 \leqslant y \leqslant 2} \right\} \cr & {\text{Therefore,}} \cr & \int_{ - 2}^2 {\int_{ - \sqrt {4 - {x^2}} }^{\sqrt {4 - {x^2}} } {\sqrt {4 - {y^2}} } dydx} = \int_{ - 2}^2 {\int_{ - \sqrt {4 - {y^2}} }^{\sqrt {4 - {y^2}} } {\sqrt {4 - {y^2}} } dxdy} \cr & = \int_{ - 2}^2 {\left[ {\int_{ - \sqrt {4 - {y^2}} }^{\sqrt {4 - {y^2}} } {\sqrt {4 - {y^2}} } dx} \right]} dy \cr & {\text{Integrate with respect to }}x \cr & = \int_{ - 2}^2 {\left[ {x\sqrt {4 - {y^2}} } \right]} _{ - \sqrt {4 - {y^2}} }^{\sqrt {4 - {y^2}} }dy \cr & = \int_{ - 2}^2 {\left[ {\sqrt {4 - {y^2}} \sqrt {4 - {y^2}} - \left( { - \sqrt {4 - {y^2}} } \right)\sqrt {4 - {y^2}} } \right]} dy \cr & = \int_{ - 2}^2 {\left[ {\left( {4 - {y^2}} \right) + \left( {4 - {y^2}} \right)} \right]} dy \cr & = 2\int_{ - 2}^2 {\left( {4 - {y^2}} \right)} dy \cr & {\text{By symmetry}} \cr & = 4\int_0^2 {\left( {4 - {y^2}} \right)} dy \cr & = 4\left[ {4y - \frac{{{y^3}}}{3}} \right]_0^2 \cr & = 4\left[ {4\left( 2 \right) - \frac{{{{\left( 2 \right)}^3}}}{3}} \right] - 4\left[ 0 \right] \cr & = \frac{{64}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.