Answer
$$3y - 8z + 25 = 0$$
Work Step by Step
$$\eqalign{
& 9{x^2} + {y^2} + 4{z^2} = 25,{\text{ }}\left( {0, - 3,2} \right) \cr
& 9{x^2} + {y^2} + 4{z^2} - 25 = 0 \cr
& {\text{Considering }} \cr
& F\left( {x,y,z} \right) = 9{x^2} + {y^2} + 4{z^2} - 25 \cr
& {\text{Calculate the partial derivatives }} \cr
& {F_x}\left( {x,y,z} \right) = \frac{\partial }{{\partial x}}\left[ {9{x^2} + {y^2} + 4{z^2} - 25} \right] = 18x \cr
& {F_y}\left( {x,y,z} \right) = \frac{\partial }{{\partial y}}\left[ {9{x^2} + {y^2} + 4{z^2} - 25} \right] = 2y \cr
& {F_z}\left( {x,y,z} \right) = \frac{\partial }{{\partial z}}\left[ {9{x^2} + {y^2} + 4{z^2} - 25} \right] = 8z \cr
& {\text{At the point }}\left( {0, - 3,2} \right){\text{ the partial derivatives are}} \cr
& {F_x}\left( {0, - 3,2} \right) = 18\left( 0 \right) = 0 \cr
& {F_y}\left( {0, - 3,2} \right) = 2\left( { - 3} \right) = - 6 \cr
& {F_z}\left( {0, - 3,2} \right) = 8\left( 2 \right) = 16 \cr
& {\text{An equation of the tangent plane at }}\left( {{x_0},{y_0},{z_0}} \right){\text{ is}} \cr
& {F_x}\left( {{x_0},{y_0},{z_0}} \right)\left( {x - {x_0}} \right) + {F_y}\left( {{x_0},{y_0},{z_0}} \right)\left( {y - {y_0}} \right) \cr
& + {F_z}\left( {{x_0},{y_0},{z_0}} \right)\left( {z - {z_0}} \right) = 0 \cr
& {\text{Substituting}} \cr
& {F_x}\left( {0, - 3,2} \right)\left( {x - 0} \right) + {F_y}\left( {0, - 3,2} \right)\left( {y + 3} \right) + {F_z}\left( {0, - 3,2} \right)\left( {z - 2} \right) = 0 \cr
& 0\left( {x - 0} \right) - 6\left( {y + 3} \right) + 16\left( {z - 2} \right) = 0 \cr
& {\text{Simplifying}} \cr
& - 6y - 18 + 16z - 32 = 0 \cr
& - 6y + 16z - 50 = 0 \cr
& {\text{Divide by 2}} \cr
& - 3y + 8z - 25 = 0 \cr
& 3y - 8z + 25 = 0 \cr} $$