Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 961: 50

Answer

$$\left\| {\nabla z\left( {1,1} \right)} \right\| = 4$$

Work Step by Step

$$\eqalign{ & z = \frac{{{x^2}}}{{x - y}},{\text{ point }}\left( {2,1} \right) \cr & {\text{Find the partial derivatives }}{z_x}{\text{ and }}{z_y} \cr & {z_x} = \frac{\partial }{{\partial x}}\left[ {\frac{{{x^2}}}{{x - y}}} \right] \cr & {z_x} = \frac{{2x\left( {x - y} \right) - {x^2}}}{{{{\left( {x - y} \right)}^2}}} \cr & {z_x} = \frac{{{x^2} - 2xy}}{{{{\left( {x - y} \right)}^2}}} \cr & and \cr & {z_y} = \frac{\partial }{{\partial y}}\left[ {\frac{{{x^2}}}{{x - y}}} \right] \cr & {z_y} = \frac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}} \cr & {\text{Calculate }}\nabla z \cr & \nabla z = {z_x}{\bf{i}} + {z_y}{\bf{j}} \cr & \nabla z = \frac{{{x^2} - 2xy}}{{{{\left( {x - y} \right)}^2}}}{\bf{i}} + \frac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}}{\bf{j}} \cr & {\text{At the given point the gradient is}} \cr & \nabla z\left( {2,1} \right) = \frac{{{2^2} - 4}}{{{{\left( 1 \right)}^2}}}{\bf{i}} + \frac{{{2^2}}}{{{{\left( 1 \right)}^2}}}{\bf{j}} \cr & \nabla z\left( {2,1} \right) = 0{\bf{i}} + 4{\bf{j}} \cr & {\text{The maximum value of }}z\left( {x,y} \right){\text{ is }}\left\| {z\left( {x,y} \right)} \right\| \cr & \left\| {\nabla z\left( {1,1} \right)} \right\| = \left\| {4{\bf{j}}} \right\| \cr & \left\| {\nabla z\left( {1,1} \right)} \right\| = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.