Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 961: 44

Answer

$${D_u}f\left( {1,4} \right) = - \frac{2}{{\sqrt 5 }}$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = \frac{1}{4}{y^2} - {x^2},{\text{ }}P\left( {1,4} \right),{\text{ }}{\bf{v}} = 2{\bf{i}} + {\bf{j}} \cr & {\text{Calculate }}\nabla f\left( {x,y} \right) \cr & \nabla f\left( {x,y} \right) = {f_x}\left( {x,y} \right){\bf{i}} + {f_y}\left( {x,y} \right){\bf{j}} \cr & {f_x}\left( {x,y} \right) = - 2x \cr & {f_y}\left( {x,y} \right) = \frac{1}{2}y \cr & \nabla f\left( {x,y} \right) = - 2x{\bf{i}} + \frac{1}{2}y{\bf{j}} \cr & {\text{Evaluate }}\nabla f\left( {1,4} \right) \cr & \nabla f\left( {1,4} \right) = - 2\left( 1 \right){\bf{i}} + \frac{1}{2}\left( 4 \right){\bf{j}} \cr & \nabla f\left( {1,4} \right) = - 2{\bf{i}} + 2{\bf{j}} \cr & {\text{Calculate }}\left| {\bf{v}} \right| \cr & \left| {\bf{v}} \right| = \left| {2{\bf{i}} + {\bf{j}}} \right| = \sqrt {4 + 1} = \sqrt 5 \cr & {\bf{v}}{\text{ is not a unit vector, the unit vector in the direction of }}{\bf{v}}{\text{ is:}} \cr & {\bf{u}} = \frac{{\bf{v}}}{{\left| {\bf{v}} \right|}} = \frac{{2{\bf{i}} + {\bf{j}}}}{{\sqrt 5 }} = \frac{2}{{\sqrt 5 }}{\bf{i}} + \frac{1}{{\sqrt 5 }}{\bf{j}} \cr & {\bf{v}}{\text{ is a unit vector.}} \cr & {\text{The directional derivative at }}\left( {1,4} \right){\text{ in the direction of }}{\bf{u}}{\text{ is}} \cr & {D_u}f\left( {x,y} \right) = \nabla f\left( {x,y} \right) \cdot {\bf{u}} \cr & {D_u}f\left( {1,4} \right) = \nabla f\left( {1,4} \right) \cdot \left( {\frac{2}{{\sqrt 5 }}{\bf{i}} + \frac{1}{{\sqrt 5 }}{\bf{j}}} \right) \cr & {D_u}f\left( {1,4} \right) = \left( { - 2{\bf{i}} + 2{\bf{j}}} \right) \cdot \left( {\frac{2}{{\sqrt 5 }}{\bf{i}} + \frac{1}{{\sqrt 5 }}{\bf{j}}} \right) \cr & {D_u}f\left( {1,4} \right) = - \frac{4}{{\sqrt 5 }} + \frac{2}{{\sqrt 5 }} \cr & {D_u}f\left( {1,4} \right) = - \frac{2}{{\sqrt 5 }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.