Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 961: 48

Answer

$$\left\| {\nabla z\left( {0,\frac{\pi }{4}} \right)} \right\| = 1$$

Work Step by Step

$$\eqalign{ & z = {e^{ - x}}\cos y,{\text{ point }}\left( {0,\frac{\pi }{4}} \right) \cr & {\text{Find the partial derivatives }}{z_x}{\text{ and }}{z_y} \cr & {z_x} = \frac{\partial }{{\partial x}}\left[ {{e^{ - x}}\cos y} \right] \cr & {z_x} = - {e^{ - x}}\cos y \cr & and \cr & {z_y} = \frac{\partial }{{\partial y}}\left[ {{e^{ - x}}\cos y} \right] \cr & {z_y} = - {e^{ - x}}\sin y \cr & {\text{Calculate }}\nabla z \cr & \nabla z = {z_x}{\bf{i}} + {z_y}{\bf{j}} \cr & \nabla z = - {e^{ - x}}\cos y{\bf{i}} - {e^{ - x}}\sin y{\bf{j}} \cr & {\text{At the given point the gradient is}} \cr & \nabla z\left( {0,\frac{\pi }{4}} \right) = - {e^0}\cos \left( {\frac{\pi }{4}} \right){\bf{i}} - {e^0}\sin \left( {\frac{\pi }{4}} \right){\bf{j}} \cr & \nabla z\left( {0,\frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}{\bf{i}} - \frac{{\sqrt 2 }}{2}{\bf{j}} \cr & {\text{The maximum value of }}z\left( {x,y} \right){\text{ is }}\left\| {z\left( {x,y} \right)} \right\| \cr & \left\| {\nabla z\left( {0,\frac{\pi }{4}} \right)} \right\| = \left\| { - \frac{{\sqrt 2 }}{2}{\bf{i}} - \frac{{\sqrt 2 }}{2}{\bf{j}}} \right\| \cr & \left\| {\nabla z\left( {0,\frac{\pi }{4}} \right)} \right\| = \sqrt {\frac{2}{4} + \frac{2}{4}} \cr & \left\| {\nabla z\left( {0,\frac{\pi }{4}} \right)} \right\| = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.