Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 961: 45

Answer

$${D_u}w\left( {1,2,2} \right) = \frac{2}{3}$$

Work Step by Step

$$\eqalign{ & w = {y^2} + xz,{\text{ }}P\left( {1,2,2} \right),{\text{ }}{\bf{v}} = 2{\bf{i}} - {\bf{j}} + 2{\bf{k}} \cr & {\text{Calculate }}\nabla w\left( {x,y,z} \right) \cr & \nabla w\left( {x,y,z} \right) = {w_x}\left( {x,y,z} \right){\bf{i}} + {w_y}\left( {x,y,z} \right){\bf{j}} + {w_z}\left( {x,y,z} \right){\bf{k}} \cr & {w_x}\left( {x,y,z} \right) = z \cr & {w_y}\left( {x,y,z} \right) = 2y \cr & {w_y}\left( {x,y,z} \right) = x \cr & \nabla w\left( {x,y,z} \right) = z{\bf{i}} + 2y{\bf{j}} + x{\bf{k}} \cr & {\text{Evaluate }}\nabla w\left( {1,2,2} \right) \cr & \nabla w\left( {1,2,2} \right) = 2{\bf{i}} + 4{\bf{j}} + {\bf{k}} \cr & {\text{Calculate }}\left| {\bf{v}} \right| \cr & \left| {\bf{v}} \right| = \left| {2{\bf{i}} - {\bf{j}} + 2{\bf{k}}} \right| = \sqrt {4 + 1 + 4} = 3 \cr & {\bf{v}}{\text{ is not a unit vector, the unit vector in the direction of }}{\bf{v}}{\text{ is:}} \cr & {\bf{u}} = \frac{{\bf{v}}}{{\left| {\bf{v}} \right|}} = \frac{{2{\bf{i}} - {\bf{j}} + 2{\bf{k}}}}{{\sqrt 5 }} = \frac{2}{3}{\bf{i}} - \frac{1}{3}{\bf{j}} + \frac{2}{3}{\bf{k}} \cr & {\bf{v}}{\text{ is a unit vector.}} \cr & {\text{The directional derivative at }}\left( {1,2,2} \right){\text{ in the direction of }}{\bf{u}}{\text{ is}} \cr & {D_u}w\left( {x,y,z} \right) = \nabla w\left( {x,y,z} \right) \cdot {\bf{u}} \cr & {D_u}w\left( {1,2,2} \right) = \nabla w\left( {1,2,2} \right) \cdot \left( {\frac{2}{3}{\bf{i}} - \frac{1}{3}{\bf{j}} + \frac{2}{3}{\bf{k}}} \right) \cr & {D_u}w\left( {1,2,2} \right) = \left( {2{\bf{i}} + 4{\bf{j}} + {\bf{k}}} \right) \cdot \left( {\frac{2}{3}{\bf{i}} - \frac{1}{3}{\bf{j}} + \frac{2}{3}{\bf{k}}} \right) \cr & {D_u}w\left( {1,2,2} \right) = \frac{4}{3} - \frac{4}{3} + \frac{2}{3} \cr & {D_u}w\left( {1,2,2} \right) = \frac{2}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.